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Abstract 

This paper presents a new method for a dynamic explicit scheme called as a combined RBSM-DEM. 
RBSM was developed as a numerical model for generalizing limit analysis in plasticity, in which a 
structure to be analyzed is idealized as an assemblage of rigid bodies connected by normal and 
tangential springs. Although the contact surfaces are handled differently by RBSM and DEM, the 
degree of freedom is the same. If the formulization using an explicit method for each element is 
used, the algorithms for dynamic analyses are identical. In this paper, we illustrate the formulization 
of RBSM that is expanded to include DEM. In addition, we examine the accuracy of the solutions 
obtained from some examples of numerical computations by the present method. 
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1. Introduction 

The implicit method is widely used for time integration in the numerical analysis of dynamic 
problems using the finite element method (FEM). On the other hand, the explicit method 
(Belytschko 1984), which involves the fracture problem, has also been extensively used. In this case, 
the time integration technique is represented by the central difference method, which calculates a 
solution sequentially. Recently, discontinuous analyses using the distinct element method (DEM) 
(Cundall 1971) and a combined DEM/FEM (Munjiza et al. 1995) have attracted considerable 
attention, and the use of the explicit scheme has increased. Therefore, a combined analysis 
technique is useful in the explicit method, and the same also applies to other numerical algorithms 
in a discontinuous problem. 
 
The rigid bodies-spring model (RBSM) (Kawai 1977) was developed as a numerical model for 
generalizing the limit analysis in plasticity, in which a structure to be analyzed is idealized as an 
assemblage of rigid bodies connected by normal and tangential springs. Although contact surfaces 
are handled differently in RBSM and DEM, the degree of freedom is the same. If formulization by 
the explicit method for each element is used, the algorithms for dynamic analyses are identical. 
 
This paper illustrates the formulization of RBSM for each element using the principle of hybrid 
virtual work. The same discussion is expanded to include DEM, and a method that combines RBSM 
and DEM is expressed. In addition, we numerically verify the stability and accuracy of the solutions 
obtained by a method that combines RBSM and DEM from some examples. 

2. Discretization of equation of motion by using principle of hybrid virtual work 

The basic equation of the elastic problem is as follows: 

   (1) 

    

   

where  is the reference configuration of a continuum body with smooth boundary ; 
, the geometrical boundary; , the kinetic boundary; , the Cauchy stress 

tensor; , the infinitesimal strain tensor; , the body force per unit volume; , the differential vector 
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operator; and , the symmetric part of . When the displacement field in  is expressed as  
and the density, as , the inertia force  of equation (1) is expressed as follows: 

 (2) 

Let  consist of M subdomains  with the closed boundary , as shown in Figure 
1(a). In other words, ; here,  .  

 

              

(a) subdomain           (b) common boundary  

Figure 1. Subdomain and its common boundary 

 
We use , defined as , as the common boundary for two subdomains  and 

 adjoined as shown in Figure 1(b). The relation for the displacement  on , which is the 

intersection boundary between  and , is as follows:  

 (3) 

The following hybrid-type virtual work equation is obtained by introducing this subsidiary 

condition into a virtual work equation using Lagrange multipliers : 

             

             (4) 

Here, N denotes the number of common boundaries of the subdomain, and  shows the virtual 

displacement. An independent displacement field in each subdomain is assumed as follows: 

 (5) 

 ,  

Here,  denotes the rigid displacement and the rigid rotation in point P in the subdomain (e), and 

 denotes a constant strain in the subdomain (e). Equation (4) implies that the Lagrange multiplier 

 is the surface force on the boundary  in subdomain  and ; hence, the surface force is 

defined as follows: 

 (6) 

Here,  shows the relative displacement on the boundary , and  shows the penalty 

function. The equation of motion discretized about space by substituting the abovementioned 

relations in equation (4) is obtained as follows: 

 (7) 
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3. Method for combining RBSM and DEM 

The formulization of RBSM is advanced by evaluating the energy stored in the spring between the 
adjoining elements as shown in Figure 2. 
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(a) before deformation              (b) after deformation 

Figure 2. Rigid bodies-spring model 

 
The equation of motion (7) is simplified by  and . Moreover, it is expressed in the global 
coordinate system as 
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Here, the linear displacement field of equation (5), assuming a rigid displacement field and a mass 
matrix that contains only diagonal elements, is given as follows: 

 

Mdd = ö

264A 0 0

0 A 0

0 0 Ip

375  (9) 

The substitution of the abovementioned relations into equation (8) gives 

Mdd
°d=PdÄKddd (10) 

In equation (6),  is the spring constant, and it is assumed as follows: 

 (11) 

Here, under a plane stress condition,  and  are expressed as follows: 

 kn =
E

(1Äó2)(h1 + h2)

ks =
E

(1 +ó)(h1 + h2)

9>=>;  (12) 

where  is Young’s modulus; , Poisson’s ratio; and h, the length of the vertical line to the 
boundary edge from the centroid of each subdomain. 
 

     

(4) (3)

(2)

(1)

 

Figure 3. Element (1) and adjoining element 
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Here, as shown in Figure 3, we expand equation (11) as an example to element (1) and the adjoining 
element. In this case, the integration on the boundary edge, with a focus on element (1), is only 
relevant to elements (2)–(4). Therefore, the other elements are not relevant simultaneous equations. 
We represent a portion of equation (10) for this example as follows: 
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 (13) 

Because  M (e) is independent of each element, when focusing on element (1), the following relations 
are obtained. 

 M(1)°d
(1)
=P

(1)
d Ä

ê
3k
(1;1)
dd d(1)+k

(1;2)
dd d(2) +k
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ë
 (14) 

From the above relationship, the stress element is obtained using the surface forces of the element 
boundary, which can be expressed as follows: 

 M (e) °U
(e)
= P (e)d Ä

I
Ä(e)

N (e)
d t

(e) dÄ (15) 

Thus, the equation of motion becomes computable for each element. As shown in Figure 4, the 
element acceleration is obtained by the resultant of the contact forces in the case of discontinuous 
bodies. 
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Figure 4. Resultant of contact forces 

 

 
°u(e) =

3X
e=1

fx(e)=m(e) (16) 

 °v(e) =
3X
e=1

f y(e)=m(e) 

 °í
(e)
=

3X
e=1

Ä(y Ä yG)fx(e) + (xÄ xG)fy(e)=I(e) 

The equation of motion (7) for the present time n is expressed as follows: 

 (17) 

Now, this formula is rewritten as follows: 

 (18) 

This is a simplified form of equation (16) using the global coordinate system. 
Here, 
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 (19) 

 (20) 

Equation (18) contains unknown acceleration parameters that can be obtained as follows: 

 (21) 

Therefore, the following relations are obtained: 

 (22) 

 (23) 

The approach of equation (21), in a manner similar to DEM, is effective in solving collision 
problems. Thus, we can update the position of each element by looping Δt in these calculations. 

4. Numerical examples 

As a numerical example, we present some simple problems.  
First, we consider a laminated structure with a point load, as shown in Figure 5(a). In this example, 
we consider a brick block. 
The material constants of this block are as follows: Young’s modulus, 5127 N/mm

2
; Poisson’s ratio, 

0.112; and density, 1850 kg/m
3
. The incremental time is assumed to be  s. In addition, 

the load condition is constant. 
The results for the displacement response on point A are shown in Figure 5(b). The blue solid line 
shows the results obtained by FEM, and the red dotted line shows those obtained by the present 
method. The results are almost identical.  
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(a) model                                         (b) deflection responses 

Figure 5. Case of elastic problem 

 
The next example is a problem involving hopping movement when a block is allowed to freely fall 
and collide with the ground, as shown in Figure 6(a). The gravitational acceleration is 9.80665 m/s

2
. 

The material constants of this block are the same as those listed in the previous example. In this 
case, we assumed that no energy loss occurred from the block as a result of rebounding from the 
ground after the collision. 
Figure 6(b) shows the status of contact point A when a brick block falls and hits the ground. The 
position was updated by repeated calculations when the length of ground penetration on the 
boundary side was larger than the allowable spring stiffness length, which verified the effect of the 
contact force. This result showed good agreement with the theoretical solution obtained by the 
equation of motion. 
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(a) model                                       (b) update position 

Figure 6. Case of hopping movement 

 
The last example is a problem involving the sliding movement of a block on a slope in a 
gravitational field, as shown in Figure 7(a). We place a square block on slopes inclined at angles of 
θ = 5°, 15°, and 30° and let it slide down as shown in Figure 7(b). Again, the results of the present 
method are almost identical to those of the theoretical solution obtained by the equation of motion. 
  

 

(a) model                                        (b) update position 

Figure 7. Case of sliding movement 

5. Conclusions 

This paper illustrated the formulization of RBSM for each element using the principle of hybrid 
virtual work. The same solution was also applied to DEM, and we developed a method that 
combined RBSM and DEM. As numerical examples, we first considered an elastic solution by 
using the present method, which had accuracy similar to that of FEM. Then, in a collision problem 
involving a falling block, we used the combined method for RBSM and DEM and expressed the 
effectiveness of the handling of the contact surface. Finally, from the behavior of a block sliding on 
a slope, we confirmed the applicability of the slip analysis. 
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